
 1 Copyright © 2003 by ASME

Proceedings of GMC2003:
Gas Machinery Conference

October 6, 2003 Salt Lake City, Utah

RECIPROCATING COMPRESSOR PERFORMANCE PREDICTIONS:
CONTROL METHODOLOGIES FROM THE PLC TO THE PC

Dwayne A. Hickman
ACI Services, Inc.

Roy Milum
Siemens Energy & Automation

ABSTRACT

To gain optimal control of reciprocating compressors, it is
necessary to predict loads and flows throughout the unit’s
defined operating map. Moreover, for automated stations these
predictions need to happen at the control level – a PLC and/or
control panel. Thus arises the need to model single and
multistage compressors with a good degree of accuracy within
the abilities of control devices. Furthermore, similar prediction
abilities must lie with Gas Control and station operators via
high-end performance prediction software.

Typical compressor performance software packages

generate useful load and flow predictions; however, they almost
always do so free from the effects of pulsation and other real
world phenomena. Unfortunately, nearly 100% of reciprocating
compressors have noteworthy pulsations. This means that to
truly control a unit based on load and flow, adjustments to
theoretical load predictions must be made that consider the
effects of pulsation et al. Fortunately, some motors, engines and
peripheral devices have sensors that can generate real-time,
measured loads and/or flows.

In many control situations, control is based simply on

predicted load from parameters such as fuel usage curves or
electricity consumed. Using feedback loops, decisions are made
to load or unload the unit. These types of methods lend
themselves reasonably well to simple, single-stage models
using only clearance pockets for load control. Nevertheless,
even in simple cases, a careful review of the compressor and its
safe operating map is still very much warranted.

In general, load control of compressors is typically done

with clearance pockets, speed adjustments, end deactivation,
timed suction valve closings, suction throttling and bypass.
Some of these methods are more likely than others to contribute
to excessive pulsations. Furthermore, concerns with curve
crossing, net rod loads, non-reversing rod loads, high interstage
temperatures and pressures, low volumetric efficiencies, blank-
off, and stage throttling can quickly arise. As such, more
demanding methods for load control must often be employed.
Today’s advanced PLCs can handle many of the requirements
for today’s newer, more robust and exacting control
methodologies. However, even these newer devices can be

taxed by the amount of calculations and storage required to
effectively model many applications.

This paper will cover theoretical predictions for Load and

Flow for single and multistage compressors, implementation of
those methods into PLCs with minimal coding, and
methodologies for using real-time measured Loads and Flows
to fine-tune the theoretical predictions. Various software
packages will be utilized to assist in the learning of these
processes, as well as spreadsheets to indicate the simplicity of
the algorithms going into the PLCs, including flow balancing
and gas compressibility algorithms, valve loss and parasitic loss
horsepowers, and flow slippage. Integration of PC and PLC to
control compressors will be discussed. And finally, results from
a recent implementation will be presented.

INTRODUCTION

With the increasing demand for natural gas in the USA for
heating and generation of electricity, comes the need to
compress more and more gas within the current transport
network. Sometimes, new pipelines and compressor stations are
required. At other times, reapplications of current facilities are
favored.

Regardless of new or reapplication, maximizing the

utilization of the compressor-driver usually leads to increased
flows and to reduction of operating costs. To maximize
utilization, complex and adaptable models of the unit must be
created and implemented in a reliable control system. PCs can
easily model complex systems and tune them with real-world
measured data: PLCs can reliably control compressor units and
safely engage hardware changes in real-time. Combining the
power of both into a single integrated solution provides
unparalleled control abilities.

By using a PC to calculate the intense numeric algorithms

used in modeling compressors, and by using the PLC to
actually control hardware changes and maintain safe
operations, the unit being controlled can be more effectively
utilized – more flow means more revenue, and lower BHP/MM
means lower operating costs.

 2 Copyright © 2003 by ASME

NOMENCLATURE
IEC 1131-3 International Standard for Programmable

Controller Programming Languages
FBD Function Block Diagram
BHP Brake Horsepower
HMI Human-Machine Interface
OPC OLE for Process Control

PC General computer workstation
PLC Programmable Logic Controller
SCL Structured Control Language

SCADA Supervisory Control And Data Acquisition
STL Statement Lists

Reciprocating compressors have been automated for many

years. As with most automation tasks, the primary issues are
safety related. To this end, many sensors are monitored and
recorded. From this array of sensor data, warnings, alarms, and
shut downs can be implemented and appropriate safety systems
can be engaged. Secondary issues are related to efficient
control of appropriate hardware.

A basic automation project would allow a station operator

the ability to change unit speed, open and close volume
pockets, deactivate ends, etc. from the convenience of the
station control room. Typically, the operator would change the
unit’s load configuration based on information such as fuel
usage of engine, expected changes in inlet or outlet pressures,
data from tables or from reviewing printed performance curves.

Figure-1: Typical Compressor Station

More advanced automation projects provide not only for

safe operation, but also for increasing the performance
capabilities of the unit. Utilizing the driver at its peak operation
and operating the compressor at its ideal load configurations
can usually result in compressing additional gas often at lower
BHP/MM rates. Developing methodologies for achieving these
ideal operating modes can be non-trivial.

In general, theoretical predictions based on just hardware

geometry are useful, but cannot typically account for real-world
phenomena. Pulsations, real valve losses, parasitic losses, low
volumetric efficiencies, effective versus real clearance factors,
lubrication and friction issues, real slippage, cylinder
preheating of inlet gases, real pressure drops and others all
contribute to less than perfect accuracy for predictions of load
and flow. Hence, today there is an increasing trend toward real-
time measurement of loads and flows.

Items such as fuel usage rates and inlet manifold pressures,
along with associated speed can be used to predict the loading
on an engine. Curves and/or functions based on these criteria
can be developed when the engine is at the OEM’s test
facilities. In the case of two CAT engines for a Talisman
project in Canada, relatively simple curvefit functions were
derived that predicted the load within ±2.0% of the test
facility’s measured loads, with an average of ±0.5% over the
engine’s entire load map (75% to 100% speed, 50% to 100%
applied load). While this is a great start, as the engine is used,
deviations from the original predictions will increase as the
equipment acquires more run-hours. Future developments from
driver OEMs will likely allow for the driver’s control panel to
predict real-time load based on the OEM’s proprietary
calculations and years of research.

For electric motors, load on the driver can often be readily

monitored by measuring the electricity consumed by the motor.
Caution needs to be applied to sensors that can be affected by
the electromagnetic fields of other motors, and/or the spiking
associated with bringing other motors online/offline. Care must
be taken to properly calculate the load at the frame coupling
based on current and voltage with consideration of the power
factor, electrical losses (hysteresis and excitation) and
mechanical losses (windage/fan and bearing friction/lube oil
shear forces). PG&E used measured loads from electric motors
to augment their control of two compressors at their McDonald
Island facilities. This integration lead to improved load
predictions when the active control permissives required the
PLC to change the current load step. It also allowed for
alarming when measured and predicted values deviated by
certain percentages – an indication of pending problems.

In regards to the compressor itself, there are also some

methods of measuring load. Real-time measurement of
compressor load can be accomplished by commercial packages
such as Windrock’s HP-Guard system, or embedded systems
from the OEM, such as Ariel’s DMS system and Dresser-
Rand’s RECON ROM system. These systems measure internal
cylinder pressures, flow rates, pressure drops, etc. Then, after
some calculations arrive at the current load on the compressor
at the coupling to the driver. An alternate method, and one that
is more prevalent in this industry, is that of using analyzers to
measure loads at key operating points.

Care must be extended to methodologies that use real-time

measured loads. That is, measured values can only be taken
when the compressor and driver are actually experiencing those
conditions. Thus, if the current conditions are in fact safe, then
all is great: if the current conditions are not safe, then you need
to quickly change conditions or shut down. Hence, relying upon
just measured values for safe operating would be analogous to
blindly walking around in a landmine field with the mine
detector directly beneath your feet.

In contrast to real-time measuring, performance prediction

by thermodynamics theory readily dictates safe areas of
operation without the unit having to experience those
conditions – in fact, performance can be predicted prior to the

 3 Copyright © 2003 by ASME

unit running, or even being built. For applications that need the
best of both real-time measurements and theory, the solution is
obvious – combine the two together. That is, use measured
values to adjust the theoretical models to generate predictions
closer to observed values. And, if real-time load and/or flow
measurements are available, allow for dynamic tuning of the
models to use those values for even more accurate predictions.
For a particular test application, Figure-2 represents areas
(light) where the theory needed to be adjusted positively to
match measured values and where the theory needed to be
adjusted negatively (darker). This is plotted against speed and
compression ratios for a single load step.

Figure-2: Theory versus Measured Discrepancies

Applying a hypothetical solution to a complex problem to

a real-world application is where problems usually surface. The
typical control PLC is often already taxed with monitoring
sensors and equipment. Coding PLCs to collect and store large
amounts of data, and then to process those volumes of data via
statistical filtering and averaging algorithms in one, two and
even three variables of freedom, can quickly become a
challenge. In fact, many PLCs that currently control
compressors by theory-based algorithms usually merge all
cylinder ends per stage and perform very simplified load/flow
calculations. Most do not calculate net rod loads but rather only
simplified gas rod loads at flange pressures, and rarely do they
calculate degrees of rod reversal. Many PLCs utilize simple
algorithms to predict gas compressibility factors, while others
jump between multiple algorithms simply based on non-
convergence. Also, most PLCs that do correct loads for
pulsations often do so by simple curvefit multipliers (typically
constants, quadratics or cubics). Methods used to tackle
multistage compressors are varied and are often very specific to
a unit and to a defined operating map. Fortunately, the required
computing power to do a thorough job of modeling the
compressor is readily available via the PC.

PCs running Windows® NT/2000 have a respectable

history of use in control applications as these operating systems
are more robust and stable than most other Window® operating
systems. But still, they do not come close to the stability of
PLCs as control devices. PLCs tend to run much more basic
and specific code, while a general operating system allows for
complex and generic code. Managing simpler code is easier,
and thus there are a lot fewer concerns with a PLC crashing
than with a full-fledge operating system crashing. Furthermore,
PLCs can usually restart within (milli-) seconds, while
Windows® based operating systems can take upwards of two to
six minutes to reboot and restart all software.

Because of the PC’s power and ease of programming, it is
desirable to have it do all of the complex calculations. Because
of the PLC’s stability, it is desirable to have it control the unit
at all times. An ideal solution would be one in which the
integration of the PLC with the PC is realized, as well as the
integration of theoretical predictions with actual measured
values.

Figure-3

For safety, the PLC needs to be able to select which load

steps are desirable and to only engage those load steps that are
safe at the current operating conditions. This means that the
PLC needs predictive algorithms for load and/or flow, as well
as algorithms for predicting safe operating map. Since a
complex model is typically beyond the abilities of most PLCs,
simpler models must be employed in practice. These
conservative models will keep units safe, but typically will
sacrifice prediction accuracy as a consequence. This sacrifice
often leads to less than ideal use of the compressor and driver,
which in turn may lead to higher operating costs and/or reduced
revenues.

To achieve desired accuracy, PC prediction software

packages can model units in great detail. Intense algorithms
will model gas compressibilities, rod reversals and net rod
loads, pressure drops, and valve and parasitic losses, as well as
being easily altered and adjusted to reflect known operating
conditions. However, since PCs have a long history of crashing,
they are not typically ideal for directly controlling certain
processes.

To create an ideal control situation, one must use the

stability of the PLC and the computing power of the PC.
Namely, program the PLC with the control philosophy and with
conservative prediction algorithms, but also allow it to retrieve
more accurate predictions from an attached PC. Thus, as long
as the PC-to-PLC communications are active, the PLC controls
the unit using the PC’s more accurate model and thus utilizing
the compressor-driver unit as effective as possible. However, if
the PC-to-PLC communications are interrupted, then the PLC
resorts to its internal conservative methods, which may not
fully utilize the unit, but nonetheless will keep it safely running.

Keeping the unit running safely regardless of the state of

the PC is really the critical element. Appendix-A lists the
pseudo code used for the test application. This code was easily
converted to actual PLC code, in this case for a Siemens PLC,

 4 Copyright © 2003 by ASME

but could just as easily be converted to other commonly used
PLCs.

Today’s PLCs offer an automation engineer several

choices of programming environments on the same platform.
Therefore, when considering what environment(s) to use when
writing PLC code the programmer must consider the strengths
of each environment relative to the type of code to be produced.
The programming options considered for the pseudo code
conversion, were standard ladder logic, Function Block
Diagram (FBD), Statement Lists (STL), and Structured Control
Language (SCL).

Ladder logic and FBD are more suited to sequencing tasks

and algorithms with relatively few arithmetic calculations.
Because of the large number of arithmetic calculations and
arrays documented in the pseudo code, SCL was selected as the
programming environment. STL, an assembler-like language, is
also appropriate for these types of calculations. However, it is
not universally understood across a large section of
programmers in the Oil and Gas industry. SCL is a Pascal-like
high-level language that is suitable for programming complex
algorithms or for tasks that require large amounts of data
management. Because of its Pascal-like look, SCL permits
easier and faster programming and provides an environment
that allows for improved comprehension among typical
programmers with BASIC and ‘C’ experience. A sample of the
program is provided in Appendix-B.

Regardless of the programming environment selected, the

programming languages provided in the S7 package comply
with international programming standard IEC 1131-3.
Programs written in IEC 1131-3 compliant environments can
be more easily transported across other 1131 compliant PLC
platforms.

The IEC 1131-3 standard, developed on well proven

programming techniques in use today in many control products,
has brought many common practices and techniques together to
produce a well defined suite of languages. IEC 1131-3 provides
a framework for developing structured control software and
facilitates the development of reusable function blocks thus
directly improving productivity of an application from
development through commissioning and long-term
maintenance. IEC 1131-3 is available in PLCs from Mitsubishi,
Phillips, Rockwell, Siemens and others.

Figure-4

COPLEY STATION TEST APPLICATION:

Copley station is located in West Virginia and consists of
three single stage compressors. The unit used in the test was
Unit #3 [Cooper-Bessemer GMVH: 3-Throw, 14-inch stroke,

330 RPM, 16¼ inch cylinders) (Figure-5). SIMATIC WinCC
(Figure-6) was used as the SCADA software with Siemens S7
PLC (Figure-7) and panel (Figure-8) and a remote PC running
Windows® NT4. eRCM Controller™ software (Figure-9) was
used on the PC to model the compressor unit. This software
read sensor data from the unit (TS, PS, PD, RPM) and generated
an array of load predictions, one load prediction for each load
step. If conditions were such that certain load steps should not
be used, then their associated load prediction was so flagged.
To verify PC-to-PLC communications remained active, a
watchdog value was continually sent to the PLC. The PLC then
used the PC’s load array to best determine which load step to
engage at the current operating conditions.

Figure-5: Copley Unit #3

Figure-6: Local HMI Software

Figure-7: Siemens S7 Controller

 5 Copyright © 2003 by ASME

Figure-8: Local Control Panel

Figure-9: eRCM Controller Software

During periods where the PC-to-PLC communications may

be interrupted, the PLC is coded to switch over to its simplified
and conservative, internal performance prediction algorithms.
These routines were written by ACI and coded by Siemens to
closely, albeit conservatively, match those generated by the
eRCM Controller™ software.

FIELD RESULTS:

• Initial Software Installation: An important issue with
installing additional software onto your HMI control
station is that there is a possibility that the new software
can make the system less reliable – by either directly
conflicting with the HMI software while running, or
indirectly by overwriting known and stable Windows
support files during installation. To this end, one may elect
to either install the additional software onto a different
computer and allow for the data exchange over the
network, or install the software after verifying with the
HMI software provider that any updated Windows support
files will not affect the HMI software. In the case of
Copley, the software was installed directly onto the HMI
PC. Initial standard installation failed to install the
software as the HMI software had locked certain Window

files it used for database support. A new installation
program was generated that did not try to replace the
existing Windows database files with newer versions. After
installation of the ACI software, both the HMI and the ACI
software were tested to make sure they ran properly.

• OPC Integration: While integration to the HMI via OPC

was very easy for single element tags, one feature that
OPC lacks is the ability to nicely pass arrays of data to and
from the server. Different methods of overcoming this
limitation were reviewed – including using the OPC’s
DDE abilities, and passing concatenated strings and then
parsing them with a macro in the HMI control software to
specific PLC memory addresses. Eventually it was
commonly desired to treat each load step element with its
own register. Fortunately, the Siemens software allowed
for easy programming of this on the HMI software side.

• Data Transfer Speeds: Initial tests were performed at 100

millisecond intervals to validate software communications
at higher data transmission speeds. Eventually, data
exchange was slowed down to one-second intervals. For
each compressor, the PC software read four (4) tag values
from the HMI software (PS, TS, PD and Speed) and wrote
data into seventeen (17) tags (one load for each of the
sixteen load steps, and a WatchDog value).

• Expected versus Observed Results:

Original project startup date was changed. Consequently,
observed data was not available by the date required for
submission of this paper. If data is available by the paper
presentation date, an addendum will be passed out to
attendees.

• Changes to Controller Software: One item added to the
control software after initial design was the ability to
toggle certain load steps on/off via the Windows software.
This new feature allows an analyst to take analyzer data
from the unit without worry that a load step change may
occur during the data collection and thus, invalidate the
data.

• Results of Interrupting PC-to-PLC Link: When the

connection is lost, the WatchDog value is no longer written
into the PLC. The PLC code considers the PC-to-PLC
connection lost whenever the WatchDog value fails to
change within five (5) seconds. With the connection lost,
the PLC retuned to calculating the loads per load step via
its conservative algorithms.

• Results of Re-establishing PC-to-PLC Link: As soon as

the connection is made, the WatchDog value refreshes in
the PLC. Future decisions to load or unload will once again
be made based on the more accurate load predictions
calculated by the PC.

• Effort to Upgrade Compressor Model: In the case of the

PC compressor model, the compressor model was created
and edited with ACI’s eRCM software. Changes to the

 6 Copyright © 2003 by ASME

model were done using a friendly Windows-environment.
The new file is then copied to the PC running the eRCM
Controller software. Changes to the PLC modeling of the
compressor are of two distinct flavors: simple and more
involved. In the case of the simple changes, only a new
data table was required to upload into the PLC. The was
typical for changes in clearances, tuning items, safety
related cutoff issues, changes in gas analysis, changes in
pressure drops, etc. The more involved changes were those
that affected load steps. Again, a new data table was
simply uploaded to the PLC to handle the performance
predictions of the new/altered load step. However, since
actual engagement of hardware items is associated with
each load step, changes to load step definitions typically
involve re-writing of some code, especially if new
hardware has been added.

• Tuning Model to Measured Loads and Flows: A major

reason for using the PC to predict the compressor
performance is that the PC can effortlessly review results
from portable analyzers, or from real-time load measuring
devices such as Windrock’s HP-Guard System, to adjust
theoretical predictions to more closely match measured
values. This collection and processing of data has no
impact on the PLC and requires no changes to the PLC’s
code. Furthermore, for those cases where pulsation effects
are affected by the number of other compressors currently
running, a separate tuning model can be developed for
multiple scenarios and appropriately engaged when
needed. Again, without any changes to the PLC’s code.

• Benefits of PC/PLC Combined Model:
o Identical performance prediction code in every PLC
o Identical load control code in every unit PLC
o Easy tuning of compressor model without code

changes to the PLC
o More efficient use of compressor and driver
o Maximum utilization of compressor operating map
o Failsafe, backup conservative PLC load predictions
o Lets PLC concentrate on compressor safety,

monitoring, and hardware changes without the
complexity of sophisticated performance prediction
algorithms – see Figure 10.

o Allows for alternate compressor models of same unit
(IE certain hardware removed for repairs, multi-
compressor pulsations disparities, etc.)

o Lower operating costs and more production.

Figure-10: Generic Two-Stage Model

OVERVIEW OF PC VERSUS PLC ALGORITHMS

Item

PC
Model

PLC
Model

Max Allowed Discharge Pressures
Max Allowed Discharge Temperatures
Rod Loads: Gas Pressures at Flanges
Rod Loads: Net/Inertia Rod Loads
Low Suction Volumetric Efficiency
Low Discharge Volumetric Efficiency
Gas Compressibility Calculations
Rod Reversal Issues
Pressure Differential Limits
Interstage Pressure Balancing
Tuning towards Measured Values
Individual Head/Crank Calculations
Entropy Based Thermodynamics

=Excellent, =Okay, =Weak, =Seldom Calculated

CONCLUSION

When there are needs to increase flows and/or to reduce
operating costs, then Station Operations may often look
towards maximizing the utilization of the compressor-driver.
This maximization can be obtained by controlling units based
on rigorous and tunable thermodynamic compressor
performance models.

Algorithms for calculating entropy, balancing interstage
masses/pressures, calculating gas compressibilities, checking
inertia-based rod loads, and determination of minimal degrees
of reversal for crosshead pin safety can be complex, iterative,
and number-crunching intensive procedures. Ignoring these
checks may lead to safety-related issues. Replacing these
checks with simplified, alternate methods will tend to reduce
the available operating map, reduce compressor-driver
utilization, or both.

Complex modeling of compressor performance is not
ideally handled by most PLCs. However, complex modeling is
easily handled by PCs, while safety and reliability are ideally
handled by PLCs. Integrating the power of both systems into a
single, yet accommodating solution can often provide the
desired increases in flows and/or reduction in operating costs.

 7 Copyright © 2003 by ASME

FREQUENTLY ASKED QUESTIONS

Q: Why not just code the more accurate and thorough
performance predictions into the PLC?

A: This in fact could be done, but it would involve a lot of
PLC programming. On a 6-throw, 2-stage, 20-load step
compressor, you would have to independently model 12 ends
(load and flow), 6 throws for net rod loads, 6 throws for rod
reversals (with at least 36 crank angle positions for each throw),
flow balancing for interstage pressure predictions, etc. for each
of the 20 load steps. For PLCs that are not ideal for these
intensive and often iterative calculations, the PC is favored.

Q: Does the PC-based software have to run on the station’s
HMI/SCADA PC?

A: No. The software can run on any local PC that can
communicate to the HMI/SCADA PC via a network
connection.

Q: Is using the active status of the PLC-to-HMI

communications okay to validate the status of the PC-to-PLC
communications?

A: No. The PLC and HMI/SCADA software may be
communicating properly even if the PC running the PC-based
software is down (power loss, operating system crash, software
crash, network error, etc.).

Q: During test interruptions of the PC-to-PLC

communications, the compressor sometimes changes load step.
Why?

A: The PLC’s load predictions and safety cutoffs are on the
conservative side to keep its software coding minimal. This
difference in load/cutoffs predicted for the active load step may
tend to result in a load step (or more) change. This change is
also an indication of how having the PC-based software handle
the performance predictions is keeping your unit running at its
ideal operation.

Q: Where can a person get a copy of the sample PLC

control algorithms?
A: Sample pseudo code for single stage control is included

in this paper (Appendix-A). Contact your vendor for your PC-
based control software for 2-stage (and higher) code.

ACKNOWLEDGMENTS
Basic Systems, Inc., Derwent, OH
Caterpillar, Lafayette Testing Center, Lafayette, IN
Chungo Project, Talisman Energy, Alberta, Canada
Equitrans, Copley Compressor Station, WV
PG&E, McDonald Island Station, CA

REFERENCES
DMS System, Ariel Corporation, Mt. Vernon, OH
eRCM™ Software, ACI Services, Inc., Derwent, OH
HP-Guard, Windrock, Inc., Knoxville, TN
RECON ROM Sys., Dresser-Rand Co., Painted Post, NY
S7 PLCs, Siemens Energy & Automation, Chicago, IL
SIMATIC WinCC, Siemens Canada Limited, Calgary
Windows® 2000, Microsoft Corporation, Redmond, WA

 8 Copyright © 2003 by ASME

Appendix A

Single Stage PLC Control Logic (Pseudo Code):
==
Sub CalculatePerformance()
' Determines BHPs and Flows for all load steps. Stores data in lookup table.
' If load step invalid (except for overload), then BHP and Flow = -1.
 IF IsPCConnectionAlive THEN
 ' PC Software has uploaded latest BHPs and Flows to PLC tables BHP_For_LS() and Flow_For_LS()
 ' PLC does not have to do any performance calculations.
 ELSE
 ' PLC does have to do simplified performance calculations that will likely over-predict consumed BHP.
 ' Convert to absolute pressures.
 PsABS = Psf1 + AtmPress
 PdABS = Pdf1 + AtmPress
 ' Convert to degrees Rankin.
 TsR = CurrTs + 459.67
 ' Get ratio of compression.
 Ratio = PdABS / PsABS
 ' Find compressibility of suction gas.
 Zs = RedlichKwongZ(PsABS, TsR)
 Tmp1 = Ratio^(1/GasK1)
 ' Determine adiabatic discharge temperature.
 TdR = TsR * Ratio/Tmp1
 IF TdR > MaxTdR1 THEN
 ALARM: Cylinder Temperatures Exceeding Allows Temperature Limits!
 ShutDownUnit
 END IF
 ' Find compressibility of discharge gas.
 Zd = RedlichKwongZ(PdABS, TdR)
 Tmp2 = CurrRPM * PsABS * (Ratio/Tmp1 - 1) * (1 + Zd/Zs)
 Tmp3 = CurrRPM^3 * PsABS / (TsR * Zs)
 ' Correct Pressure Ratio for Effects of Gas Compressibility for VE Calculations.
 Tmp1 = Tmp1 * Zs/Zd
 ' Cycle through all defined load steps and determine each step’s load.
 FOR LS = 1 TO NumberOfLoadSteps
 ' Calculate Volumetric Efficiency (no slippage in load VE’s)
 VE = 1 - EffClr1(LS) * (Tmp1 - 1)
 ' BHP = Adiabatic + ValveLoss + ParasiticLoss + AuxHP
 Tmp4 = Tmp2 * VE * A1Mod1(LS) + Tmp3 * (VE * A3Mod1(LS) + D3Mod1(LS)) + MaxAuxHP
 ' Check if this load step is safe at these conditions, based on low volumetric efficiencies.
 VE = 1 - ACIe1(LS) * (Tmp1 - 1)
 IF VE < MinVEe1 THEN Tmp4 = -1
 ' Check if this load step is safe at these conditions, based on crosshead pin failing to reverse.
 VE = 1 - ACIx1(LS) * (Tmp - 1)
 IF VE < MinVEx1 THEN Tmp4 = -1
 ' Check if Gas Flange Rod Loads are safe. This code only handles deactivation at Suction Pressure.
 IF RL13(LS) < 2 THEN
 TmpRLC = RL11*Pdf1 ' Cases 0 and 1
 ELSE
 TmpRLC = RL11*Psf1 ' Case 2
 END IF
 TmpRLC = TmpRLC - RL12*Psf1
 IF RL13(LS) = 1 THEN
 TmpRLT = RL12*Psf1 ' Case 1
 ELSE
 TmpRLT = RL12*Pdf1 ' Cases 0 and 2
 END IF
 TmpRLT = TmpRLT - RL11*Psf1
 IF TmpRLC > RLC1 THEN Tmp4 = -1
 IF TmpRLT > RLT1 THEN Tmp4 = -1
 BHP_For_LS(LS) = Tmp4
 NEXT LS
 END IF
End Sub
==

==
Function RedlichKwongZ(GasPressureAbs, GasTempR)
' This method is reasonable for most natural gases -- some restrictions exist.
' Use AGA-8 for process gases.
 ab = Ax * Ax / Bx
 b1 = Bx * GasPressureAbs / GasTempR

 9 Copyright © 2003 by ASME

 a1 = b1 * ab / (GasTempR * SQRT(GasTempR))
 Q = (a1 - b1 - b1 * b1) * OneThird
 R = One27th + (a1 * b1 - Q) * 0.5
 a = Q - OneNinth
 d = a * a * a + R * R
 IF d > 0 THEN
 d1 = SQRT(d)
 a1 = ABS(R - d1) ^ OneThird
 b1 = ABS(R + d1) ^ OneThird
 IF R - d1 >= 0 THEN Zfact = a1 ELSE Zfact = -a1
 IF R + d1 >= 0 THEN Zfact = Zfact + b1 ELSE Zfact = Zfact - b1
 IF Zfact < 0 AND a < 0 THEN Zfact = Zfact + SQRT(ABS(1 - 9 * Q))
 Zfact = Zfact + OneThird
 IF Zfact > 0.254 THEN RedlichKwongZ = Zfact ELSE RedlichKwongZ = 0.254
 ELSEIF d < 0 THEN
 IF r - d1 = 0 THEN
 a1 = Pi / 2
 ELSE
 IF D < 0 THEN
 a1 = ABS(ATN(SQRT(-D) / (r - d1)))
 ELSE
 IF r - d1 > 0 THEN a1 = 0 Else a1 = Pi
 END IF
 END IF
 RedlichKwongZ = 2 * SQRT(-a) * COS(a1 * OneThird) + OneThird
 ELSE ' d=0
 IF a >= 0 THEN
 RedlichKwongZ = 2 * ABS(R) ^ OneThird + OneThird
 ELSE
 RedlichKwongZ = 2 * SQRT(-R) + OneThird
 END IF
 END IF
End Function
==

==
' Main Code:
' This is the main control section. It decides when/if a load step change is required.

IF In_ESD_Mode THEN ShutdownUnit ' May be triggered by code or by user.

' Initialize actions to NOT call for changes to load step.
Load = FALSE
Unload = FALSE

' Set items required if Stop Button pressed. This will lead to quickly unloading the unit.
' Only set timer if not already set, or if time before next load step check is too long.
IF InStopMode AND (LS_Time <> FastUnloadTime OR NextLSCheckTimer > FastUnloadTime) THEN
 LS_Time = 0
 SET NextLSCheckTimer TO LS_Time
 Unload = TRUE
END IF

' Get sensor data.
' If no real-time BHP or Flow available then CurrBHP = 0 and/or CurrFlow = 0.
READ CurrTs, CurrPs, CurrPd, CurrRPM, CurrBHP, CurrFlow, IsPCConnectionAlive

IF CurrTs < 40 OR CurrTs > 120 THEN
 WARNING: Suction Temperature Sensor not working. Assuming 60 Deg F.
 CurrTs = 60
END IF
IF CurrPs < -15 OR CurrPd < 0 OR (CurrRPM < 0 OR CurrRPM > 1800) THEN
 ALARM: Critical Sensor not working. Shutting Down.
 In_ESD_Mode = TRUE
END IF

' Take into account pressure drops to arrive at expected pressures at cylinder flanges.
Psf1 = CurrPs * (1 - PsDropPer1) - PsDrop1
Pdf1 = CurrPd * (1 + PdDropPer1) + PdDrop1

' We do not handle throttling here.
IF Psf1 > Pdf1 THEN
 ALARM: Throttling conditions!
 CurrPs = CurrPd

 10 Copyright © 2003 by ASME

 ' Psf1 is not changed so rod loads will be correct.
END IF

' Derate driver power available if RPM changes. Also apply engine limits, if any, here.
MaxAllowedBHP = RatedBHP / RatedRPM * CurrRPM * TorqueAdj

' Calculate BHP/Flow for all load steps.
CalculatePerformance()

' If real-time horsepower is available, use it to fine tune predictions.
IF CurrBHP <= 0 OR BHP_For_LS(CurrLS) = -1 THEN
 BHPRealTimeAdj = 1
ELSE
 BHPRealTimeAdj = BHP_For_LS(CurrLS) / CurrBHP
END IF

' Try to prevent cycling of hardware when the current unloading step is lost.
IF BHP_For_LS(CurrLS) = -1 THEN
 ' Let us unload for now and set PLC to immediately pick the next safe load step.
 LS_Time = 0
 SET NextLSCheckTimer TO LS_Time
 Unload = TRUE
 ' Return to most conservative setting.
 BHPRealTimeAdj = 1
 ' Set to slow mode to prevent hardware cycling around these current conditions.
 InPreventCyclingMode = TRUE
ELSE
 InPreventCyclingMode = FALSE
END IF

' Limit correction amounts. If adjustments are too large, then a warning/alarm may be desirable.
IF BHPRealTimeAdj < 0.92 THEN BHPRealTimeAdj = 0.92
IF BHPRealTimeAdj > 1.08 THEN BHPRealTimeAdj = 1.08
IF TorqueAdj < TorqueMinAdj THEN BHPRealTimeAdj = TorqueMinAdj
IF TorqueAdj > TorqueMaxAdj THEN BHPRealTimeAdj = TorqueMaxAdj

' TRUE if permissive is not an active permissive, or if it is active and it is calling for load.
LoadPs = NOT IsActivePsPermissive OR [CurrPs >= MaxPs]
LoadPd = NOT IsActivePdPermissive OR [CurrPd <= MinPd]
LoadBHP = NOT IsActiveBHPPermissive OR [CurrBHP <= MinBHP]
LoadFlow = NOT IsActiveFlowPermissive OR [CurrFlow <= MinFlow]

' TRUE only if permissive is active permissive and it is calling for less load.
UnloadPs = IsActivePsPermissive AND [CurrPs <= MinPs]
UnloadPd = IsActivePdPermissive AND [CurrPd >= MaxPd]
UnloadBHP = IsActiveBHPPermissive AND [CurrBHP >= MaxBHP OR CurrBHP > MaxAllowedBHP]
UnloadFlow = IsActiveFlowPermissive AND [CurrFlow >= MaxFlow]

' Set load and unload statuses
Unload = [UnloadPs OR UnloadPd OR UnloadBHP OR UnloadFlow OR InStopMode] OR Unload
Load = [LoadPs AND LoadPd AND LoadBHP AND LoadFlow OR Load] AND NOT Unload

' The main decision block
IF (NOT In_ESD_Mode AND NOT Maintenance_Mode) AND NextLSCheckTimer <= 0 AND (Load OR Unload) THEN
 ' Determine where we are relative to unit’s current maximum allowed horsepower.
 Adj = BHP_For_LS(CurrLS) / MaxAllowedBHP
 IF Adj > 1 THEN Adj = 1
 AdjLast = Adj ' Remember last adjustment factor.
 Cnt = 0
 DO
 ' To prevent possibility of an infinite loop, we will limit our time in this loop to 16 passes.
 Cnt = Cnt + 1
 IF Cnt > 16 THEN EXIT LOOP
 ' If we need to jump real far, then let's start to normalize our correction factor for safety.
 IF Cnt = 6 OR Cnt = 10 THEN BHPRealTimeAdj = (1 + BHPRealTimeAdj) / 2
 ' Adjust load goal up/down by 2% of allowed load (or of rated for some applications).
 IF Load AND Adj < 0.985 THEN Adj = Adj + 0.02
 IF Unload AND Adj > 0.025 THEN Adj = Adj - 0.02
 IF Adj > 1.00 THEN Adj = 0.99
 IF Adj < 0.00 THEN Adj = 0.02

 ' Set DesiredBHP based on loading/unloading needs.
 DesiredBHP = Adj * MaxAllowedBHP * BHPRealTimeAdj
 ' Next loop finds the best load step, based on allowed load, to engage for the current operating point.
 ' Could be altered to consider Flow or BHP/MM instead of just plain load.

 11 Copyright © 2003 by ASME

 LS_Found = -1
 BestLoad = -1
 FOR LS = 1 TO NumberOfLoadSteps
 IF BHP_For_LS(LS) <= DesiredBHP AND BHP_For_LS(LS) > BestLoad THEN
 BestLoad = BHP_For_LS(LS)
 LS_Found = LS
 END IF
 NEXT LS
 IF ABS(AdjLast - Adj) > 16 AND NOT (StartUp OR InStopMode) THEN
 WARNING! Excessively large change in load step required.
 END IF
 ' Exit main loop if we in fact found a new and valid load step.
 LOOP UNTIL (LS_Found <> CurrLS AND LS_Found <> -1)

 ' If valid load step found, engage it.
 IF LS_Found <> CurrLS AND LS_Found <> -1 AND Cnt <= 16 THEN
 ' Force a hardware change.
 EngageHardwareFor LS_Found
 CurrLS = LS_Found
 ELSEIF (LS_Found<>-1 AND Cnt<=16) OR (Unload AND LS_Found = -1 AND _
 BHP_For_LS(CurrLS) <= MaxAllowedBHP * BHPRealTimeAdj) THEN
 ' Do nothing. Not meeting permissives, but then we can't satisfy them right now so stay where we are.
 ELSE
 ' Unit is in trouble. Set alarm and shut down then unit.
 ALARM: No valid load step found!
 In_ESD_Mode = TRUE
 END IF

 ' Determine amount of time to at least stay in the current load step.
 IF IsPCConnectionAlive THEN
 IF Load AND NOT StartUp THEN
 IF InPreventCyclingMode THEN LS_Time = SlowLoadTime ELSE LS_Time = NormalLoadTime
 END IF
 IF Load AND StartUp THEN LS_Time = FastLoadTime
 IF Unload AND NOT InStopMode THEN LS_Time = NormalUnloadTime
 IF Unload AND InStopMode THEN LS_Time = FastUnloadTime
 ELSE
 ' React quicker if in blind mode.
 IF Load THEN LS_Time = FastLoadTime
 IF Unload THEN LS_Time = FastUnloadTime
 END IF

 ' Set timer so that we do not change hardware again for a certain amount of time.
 SET NextLSCheckTimer TO LS_Time
END IF

 12 Copyright © 2003 by ASME

Appendix B

Example of SCL (Structured Control Language) Code for Two-Stage Model

 13 Copyright © 2003 by ASME

Appendix C

Station Flow Control Pseudo Code
================================

 Input Current_Station_Flow from Flow Meter

 IF Within Flow_Setpoint Deadband THEN

 ConsideringAddingUnit = FALSE
 ConsideringRemovingUnit = FALSE

 ELSEIF Wait_Timer = 0 AND NOT CurrentlyChangingNumberOfUnits THEN ‘ Our waiting period is over!

 IF Current_Station_Flow < Flow_Setpoint THEN

 ConsideringRemovingUnit = FALSE
 FlowFlag = FlowFlag + 0.01
 IF FlowFlag > 1 THEN

 FlowFlag =1
 IF NOT ConsideringAddingUnit THEN

 ConsideringAddingUnit = TRUE
 Start ConsideringAddingUnitTimer ‘ Typically 5 to 30 minutes.

 ENDIF
 ENDIF

 ELSE

 ConsideringAddingUnit = FALSE
 FlowFlag = FlowFlag - 0.01

 IF FlowFlag < 0 THEN
 FlowFlag = 0
 IF NOT ConsideringRemovingUnit THEN

 ConsideringRemovingUnit = TRUE
 Start ConsideringRemovingUnitTimer ‘ Typically 5 to 30 minutes.

 ENDIF
 ENDIF

 ENDIF

 Send FlowFlag to all online Unit PLCs ‘ Typically rescale to 70%..100% to become Unit_Desired_BHP%
 Start Wait_Timer to X seconds. ‘ Typically 15 – 60 seconds based on user-desired reaction time.

ENDIF

IF ConsideringAddingUnit AND ConsideringAddingUnitTimer = 0 THEN ‘ Need to add a unit persists!
 Bring next unit online, if one available (AND it does not add TOO much flow if used as a Swing Unit)
 CurrentlyChangingNumberOfUnits = TRUE
ENDIF

IF ConsideringRemovingUnit AND ConsideringRemovingUnitTimer = 0 THEN ‘ Need to stop a unit persists!
 Stop one of the units, except if only one left, then leave it on or stop it -- your call!
 CurrentlyChangingNumberOfUnits = TRUE
 If using Swing Unit philosophy, select which of the remaining units to become the new Swing Unit.
ENDIF

 IF CurrentlyChangingNumberOfUnits THEN

 IF (Current unit is ready to be brought online (IE Oil Temp. Okay)) OR (it has stopped) THEN
 CurrentlyChangingNumberOfUnits = FALSE
 ENDIF

 ENDIF

