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ABSTRACT 

To gain optimal control of reciprocating compressors, it is 
necessary to predict loads and flows throughout the unit’s 
defined operating map. Moreover, for automated stations these 
predictions need to happen at the control level – a PLC and/or 
control panel. Thus arises the need to model single and 
multistage compressors with a good degree of accuracy within 
the abilities of control devices. Furthermore, similar prediction 
abilities must lie with Gas Control and station operators via 
high-end performance prediction software. 

 
Typical compressor performance software packages 

generate useful load and flow predictions; however, they almost 
always do so free from the effects of pulsation and other real 
world phenomena. Unfortunately, nearly 100% of reciprocating 
compressors have noteworthy pulsations. This means that to 
truly control a unit based on load and flow, adjustments to 
theoretical load predictions must be made that consider the 
effects of pulsation et al. Fortunately, some motors, engines and 
peripheral devices have sensors that can generate real-time, 
measured loads and/or flows. 

 
In many control situations, control is based simply on 

predicted load from parameters such as fuel usage curves or 
electricity consumed. Using feedback loops, decisions are made 
to load or unload the unit. These types of methods lend 
themselves reasonably well to simple, single-stage models 
using only clearance pockets for load control. Nevertheless, 
even in simple cases, a careful review of the compressor and its 
safe operating map is still very much warranted. 

 
In general, load control of compressors is typically done 

with clearance pockets, speed adjustments, end deactivation, 
timed suction valve closings, suction throttling and bypass. 
Some of these methods are more likely than others to contribute 
to excessive pulsations. Furthermore, concerns with curve 
crossing, net rod loads, non-reversing rod loads, high interstage 
temperatures and pressures, low volumetric efficiencies, blank-
off, and stage throttling can quickly arise. As such, more 
demanding methods for load control must often be employed. 
Today’s advanced PLCs can handle many of the requirements 
for today’s newer, more robust and exacting control 
methodologies. However, even these newer devices can be 

taxed by the amount of calculations and storage required to 
effectively model many applications. 

 
This paper will cover theoretical predictions for Load and 

Flow for single and multistage compressors, implementation of 
those methods into PLCs with minimal coding, and 
methodologies for using real-time measured Loads and Flows 
to fine-tune the theoretical predictions. Various software 
packages will be utilized to assist in the learning of these 
processes, as well as spreadsheets to indicate the simplicity of 
the algorithms going into the PLCs, including flow balancing 
and gas compressibility algorithms, valve loss and parasitic loss 
horsepowers, and flow slippage. Integration of PC and PLC to 
control compressors will be discussed. And finally, results from 
a recent implementation will be presented. 

 
INTRODUCTION 

With the increasing demand for natural gas in the USA for 
heating and generation of electricity, comes the need to 
compress more and more gas within the current transport 
network. Sometimes, new pipelines and compressor stations are 
required. At other times, reapplications of current facilities are 
favored. 

 
Regardless of new or reapplication, maximizing the 

utilization of the compressor-driver usually leads to increased 
flows and to reduction of operating costs. To maximize 
utilization, complex and adaptable models of the unit must be 
created and implemented in a reliable control system. PCs can 
easily model complex systems and tune them with real-world 
measured data: PLCs can reliably control compressor units and 
safely engage hardware changes in real-time. Combining the 
power of both into a single integrated solution provides 
unparalleled control abilities. 

 
By using a PC to calculate the intense numeric algorithms 

used in modeling compressors, and by using the PLC to 
actually control hardware changes and maintain safe 
operations, the unit being controlled can be more effectively 
utilized – more flow means more revenue, and lower BHP/MM 
means lower operating costs. 
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NOMENCLATURE 
IEC 1131-3 International Standard for Programmable 

Controller Programming Languages 
FBD Function Block Diagram 
BHP Brake Horsepower 
HMI Human-Machine Interface 
OPC OLE for Process Control 

PC General computer workstation 
PLC Programmable Logic Controller 
SCL Structured Control Language 

SCADA Supervisory Control And Data Acquisition 
STL Statement Lists 

 
Reciprocating compressors have been automated for many 

years. As with most automation tasks, the primary issues are 
safety related. To this end, many sensors are monitored and 
recorded. From this array of sensor data, warnings, alarms, and 
shut downs can be implemented and appropriate safety systems 
can be engaged. Secondary issues are related to efficient 
control of appropriate hardware. 

 
A basic automation project would allow a station operator 

the ability to change unit speed, open and close volume 
pockets, deactivate ends, etc. from the convenience of the 
station control room. Typically, the operator would change the 
unit’s load configuration based on information such as fuel 
usage of engine, expected changes in inlet or outlet pressures, 
data from tables or from reviewing printed performance curves. 

 

 
Figure-1: Typical Compressor Station 

 
More advanced automation projects provide not only for 

safe operation, but also for increasing the performance 
capabilities of the unit. Utilizing the driver at its peak operation 
and operating the compressor at its ideal load configurations 
can usually result in compressing additional gas often at lower 
BHP/MM rates. Developing methodologies for achieving these 
ideal operating modes can be non-trivial. 

 
In general, theoretical predictions based on just hardware 

geometry are useful, but cannot typically account for real-world 
phenomena. Pulsations, real valve losses, parasitic losses, low 
volumetric efficiencies, effective versus real clearance factors, 
lubrication and friction issues, real slippage, cylinder 
preheating of inlet gases, real pressure drops and others all 
contribute to less than perfect accuracy for predictions of load 
and flow. Hence, today there is an increasing trend toward real-
time measurement of loads and flows. 

 

Items such as fuel usage rates and inlet manifold pressures, 
along with associated speed can be used to predict the loading 
on an engine. Curves and/or functions based on these criteria 
can be developed when the engine is at the OEM’s test 
facilities. In the case of two CAT engines for a Talisman 
project in Canada, relatively simple curvefit functions were 
derived that predicted the load within ±2.0% of the test 
facility’s measured loads, with an average of ±0.5% over the 
engine’s entire load map (75% to 100% speed, 50% to 100% 
applied load). While this is a great start, as the engine is used, 
deviations from the original predictions will increase as the 
equipment acquires more run-hours. Future developments from 
driver OEMs will likely allow for the driver’s control panel to 
predict real-time load based on the OEM’s proprietary 
calculations and years of research. 

 
For electric motors, load on the driver can often be readily 

monitored by measuring the electricity consumed by the motor. 
Caution needs to be applied to sensors that can be affected by 
the electromagnetic fields of other motors, and/or the spiking 
associated with bringing other motors online/offline. Care must 
be taken to properly calculate the load at the frame coupling 
based on current and voltage with consideration of the power 
factor, electrical losses (hysteresis and excitation) and 
mechanical losses (windage/fan and bearing friction/lube oil 
shear forces). PG&E used measured loads from electric motors 
to augment their control of two compressors at their McDonald 
Island facilities. This integration lead to improved load 
predictions when the active control permissives required the 
PLC to change the current load step. It also allowed for 
alarming when measured and predicted values deviated by 
certain percentages – an indication of pending problems. 

 
In regards to the compressor itself, there are also some 

methods of measuring load. Real-time measurement of 
compressor load can be accomplished by commercial packages 
such as Windrock’s HP-Guard system, or embedded systems 
from the OEM, such as Ariel’s DMS system and Dresser-
Rand’s RECON ROM system. These systems measure internal 
cylinder pressures, flow rates, pressure drops, etc. Then, after 
some calculations arrive at the current load on the compressor 
at the coupling to the driver. An alternate method, and one that 
is more prevalent in this industry, is that of using analyzers to 
measure loads at key operating points. 

 
Care must be extended to methodologies that use real-time 

measured loads. That is, measured values can only be taken 
when the compressor and driver are actually experiencing those 
conditions. Thus, if the current conditions are in fact safe, then 
all is great: if the current conditions are not safe, then you need 
to quickly change conditions or shut down. Hence, relying upon 
just measured values for safe operating would be analogous to 
blindly walking around in a landmine field with the mine 
detector directly beneath your feet. 

 
In contrast to real-time measuring, performance prediction 

by thermodynamics theory readily dictates safe areas of 
operation without the unit having to experience those 
conditions – in fact, performance can be predicted prior to the 
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unit running, or even being built. For applications that need the 
best of both real-time measurements and theory, the solution is 
obvious – combine the two together. That is, use measured 
values to adjust the theoretical models to generate predictions 
closer to observed values. And, if real-time load and/or flow 
measurements are available, allow for dynamic tuning of the 
models to use those values for even more accurate predictions. 
For a particular test application, Figure-2 represents areas 
(light) where the theory needed to be adjusted positively to 
match measured values and where the theory needed to be 
adjusted negatively (darker). This is plotted against speed and 
compression ratios for a single load step. 

 

 
Figure-2: Theory versus Measured Discrepancies 
 
Applying a hypothetical solution to a complex problem to 

a real-world application is where problems usually surface. The 
typical control PLC is often already taxed with monitoring 
sensors and equipment. Coding PLCs to collect and store large 
amounts of data, and then to process those volumes of data via 
statistical filtering and averaging algorithms in one, two and 
even three variables of freedom, can quickly become a 
challenge. In fact, many PLCs that currently control 
compressors by theory-based algorithms usually merge all 
cylinder ends per stage and perform very simplified load/flow 
calculations. Most do not calculate net rod loads but rather only 
simplified gas rod loads at flange pressures, and rarely do they 
calculate degrees of rod reversal. Many PLCs utilize simple 
algorithms to predict gas compressibility factors, while others 
jump between multiple algorithms simply based on non-
convergence. Also, most PLCs that do correct loads for 
pulsations often do so by simple curvefit multipliers (typically 
constants, quadratics or cubics). Methods used to tackle 
multistage compressors are varied and are often very specific to 
a unit and to a defined operating map. Fortunately, the required 
computing power to do a thorough job of modeling the 
compressor is readily available via the PC. 

 
PCs running Windows® NT/2000 have a respectable 

history of use in control applications as these operating systems 
are more robust and stable than most other Window® operating 
systems. But still, they do not come close to the stability of 
PLCs as control devices. PLCs tend to run much more basic 
and specific code, while a general operating system allows for 
complex and generic code. Managing simpler code is easier, 
and thus there are a lot fewer concerns with a PLC crashing 
than with a full-fledge operating system crashing. Furthermore, 
PLCs can usually restart within (milli-) seconds, while 
Windows® based operating systems can take upwards of two to 
six minutes to reboot and restart all software. 

 

Because of the PC’s power and ease of programming, it is 
desirable to have it do all of the complex calculations. Because 
of the PLC’s stability, it is desirable to have it control the unit 
at all times. An ideal solution would be one in which the 
integration of the PLC with the PC is realized, as well as the 
integration of theoretical predictions with actual measured 
values. 

 

 
Figure-3 

 
For safety, the PLC needs to be able to select which load 

steps are desirable and to only engage those load steps that are 
safe at the current operating conditions. This means that the 
PLC needs predictive algorithms for load and/or flow, as well 
as algorithms for predicting safe operating map. Since a 
complex model is typically beyond the abilities of most PLCs, 
simpler models must be employed in practice. These 
conservative models will keep units safe, but typically will 
sacrifice prediction accuracy as a consequence. This sacrifice 
often leads to less than ideal use of the compressor and driver, 
which in turn may lead to higher operating costs and/or reduced 
revenues. 

 
To achieve desired accuracy, PC prediction software 

packages can model units in great detail. Intense algorithms 
will model gas compressibilities, rod reversals and net rod 
loads, pressure drops, and valve and parasitic losses, as well as 
being easily altered and adjusted to reflect known operating 
conditions. However, since PCs have a long history of crashing, 
they are not typically ideal for directly controlling certain 
processes. 

 
To create an ideal control situation, one must use the 

stability of the PLC and the computing power of the PC. 
Namely, program the PLC with the control philosophy and with 
conservative prediction algorithms, but also allow it to retrieve 
more accurate predictions from an attached PC. Thus, as long 
as the PC-to-PLC communications are active, the PLC controls 
the unit using the PC’s more accurate model and thus utilizing 
the compressor-driver unit as effective as possible. However, if 
the PC-to-PLC communications are interrupted, then the PLC 
resorts to its internal conservative methods, which may not 
fully utilize the unit, but nonetheless will keep it safely running. 

 
Keeping the unit running safely regardless of the state of 

the PC is really the critical element. Appendix-A lists the 
pseudo code used for the test application. This code was easily 
converted to actual PLC code, in this case for a Siemens PLC, 
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but could just as easily be converted to other commonly used 
PLCs.  

 
Today’s PLCs offer an automation engineer several 

choices of programming environments on the same platform. 
Therefore, when considering what environment(s) to use when 
writing PLC code the programmer must consider the strengths 
of each environment relative to the type of code to be produced. 
The programming options considered for the pseudo code 
conversion, were standard ladder logic, Function Block 
Diagram (FBD), Statement Lists (STL), and Structured Control 
Language (SCL). 

 
Ladder logic and FBD are more suited to sequencing tasks 

and algorithms with relatively few arithmetic calculations. 
Because of the large number of arithmetic calculations and 
arrays documented in the pseudo code, SCL was selected as the 
programming environment. STL, an assembler-like language, is 
also appropriate for these types of calculations. However, it is 
not universally understood across a large section of 
programmers in the Oil and Gas industry. SCL is a Pascal-like 
high-level language that is suitable for programming complex 
algorithms or for tasks that require large amounts of data 
management. Because of its Pascal-like look, SCL permits 
easier and faster programming and provides an environment 
that allows for improved comprehension among typical 
programmers with BASIC and ‘C’ experience. A sample of the 
program is provided in Appendix-B. 

 
Regardless of the programming environment selected, the 

programming languages provided in the S7 package comply 
with international programming standard IEC 1131-3.  
Programs written in IEC 1131-3 compliant environments can 
be more easily transported across other 1131 compliant PLC 
platforms. 

 
The IEC 1131-3 standard, developed on well proven 

programming techniques in use today in many control products, 
has brought many common practices and techniques together to 
produce a well defined suite of languages. IEC 1131-3 provides 
a framework for developing structured control software and 
facilitates the development of reusable function blocks thus 
directly improving productivity of an application from 
development through commissioning and long-term 
maintenance. IEC 1131-3 is available in PLCs from Mitsubishi, 
Phillips, Rockwell, Siemens and others. 

 

 
Figure-4 

 
COPLEY STATION TEST APPLICATION:  

Copley station is located in West Virginia and consists of 
three single stage compressors. The unit used in the test was 
Unit #3 [Cooper-Bessemer GMVH: 3-Throw, 14-inch stroke, 

330 RPM, 16¼ inch cylinders) (Figure-5). SIMATIC WinCC 
(Figure-6) was used as the SCADA software with Siemens S7 
PLC (Figure-7) and panel (Figure-8) and a remote PC running 
Windows® NT4. eRCM Controller™ software (Figure-9) was 
used on the PC to model the compressor unit. This software 
read sensor data from the unit (TS, PS, PD, RPM) and generated 
an array of load predictions, one load prediction for each load 
step. If conditions were such that certain load steps should not 
be used, then their associated load prediction was so flagged. 
To verify PC-to-PLC communications remained active, a 
watchdog value was continually sent to the PLC. The PLC then 
used the PC’s load array to best determine which load step to 
engage at the current operating conditions. 

 

 
Figure-5: Copley Unit #3 

 

 
Figure-6: Local HMI Software 

 

 
Figure-7: Siemens S7 Controller 
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Figure-8: Local Control Panel 

 

 
Figure-9: eRCM Controller Software 

 
During periods where the PC-to-PLC communications may 

be interrupted, the PLC is coded to switch over to its simplified 
and conservative, internal performance prediction algorithms. 
These routines were written by ACI and coded by Siemens to 
closely, albeit conservatively, match those generated by the 
eRCM Controller™ software. 
 
FIELD RESULTS:  

• Initial Software Installation: An important issue with 
installing additional software onto your HMI control 
station is that there is a possibility that the new software 
can make the system less reliable – by either directly 
conflicting with the HMI software while running, or 
indirectly by overwriting known and stable Windows 
support files during installation. To this end, one may elect 
to either install the additional software onto a different 
computer and allow for the data exchange over the 
network, or install the software after verifying with the 
HMI software provider that any updated Windows support 
files will not affect the HMI software. In the case of 
Copley, the software was installed directly onto the HMI 
PC. Initial standard installation failed to install the 
software as the HMI software had locked certain Window 

files it used for database support. A new installation 
program was generated that did not try to replace the 
existing Windows database files with newer versions. After 
installation of the ACI software, both the HMI and the ACI 
software were tested to make sure they ran properly. 

 
• OPC Integration: While integration to the HMI via OPC 

was very easy for single element tags, one feature that 
OPC lacks is the ability to nicely pass arrays of data to and 
from the server. Different methods of overcoming this 
limitation were reviewed – including using the OPC’s 
DDE abilities, and passing concatenated strings and then 
parsing them with a macro in the HMI control software to 
specific PLC memory addresses. Eventually it was 
commonly desired to treat each load step element with its 
own register. Fortunately, the Siemens software allowed 
for easy programming of this on the HMI software side. 

 
• Data Transfer Speeds: Initial tests were performed at 100 

millisecond intervals to validate software communications 
at higher data transmission speeds. Eventually, data 
exchange was slowed down to one-second intervals. For 
each compressor, the PC software read four (4) tag values 
from the HMI software (PS, TS, PD and Speed) and wrote 
data into seventeen (17) tags (one load for each of the 
sixteen load steps, and a WatchDog value). 

 
• Expected versus Observed Results: 

Original project startup date was changed. Consequently, 
observed data was not available by the date required for 
submission of this paper. If data is available by the paper 
presentation date, an addendum will be passed out to 
attendees. 
 

• Changes to Controller Software: One item added to the 
control software after initial design was the ability to 
toggle certain load steps on/off via the Windows software. 
This new feature allows an analyst to take analyzer data 
from the unit without worry that a load step change may 
occur during the data collection and thus, invalidate the 
data. 

 
• Results of Interrupting PC-to-PLC Link: When the 

connection is lost, the WatchDog value is no longer written 
into the PLC. The PLC code considers the PC-to-PLC 
connection lost whenever the WatchDog value fails to 
change within five (5) seconds. With the connection lost, 
the PLC retuned to calculating the loads per load step via 
its conservative algorithms. 

 
• Results of Re-establishing PC-to-PLC Link: As soon as 

the connection is made, the WatchDog value refreshes in 
the PLC. Future decisions to load or unload will once again 
be made based on the more accurate load predictions 
calculated by the PC. 

 
• Effort to Upgrade Compressor Model: In the case of the 

PC compressor model, the compressor model was created 
and edited with ACI’s eRCM software. Changes to the 
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model were done using a friendly Windows-environment. 
The new file is then copied to the PC running the eRCM 
Controller software. Changes to the PLC modeling of the 
compressor are of two distinct flavors: simple and more 
involved. In the case of the simple changes, only a new 
data table was required to upload into the PLC. The was 
typical for changes in clearances, tuning items, safety 
related cutoff issues, changes in gas analysis, changes in 
pressure drops, etc. The more involved changes were those 
that affected load steps. Again, a new data table was 
simply uploaded to the PLC to handle the performance 
predictions of the new/altered load step. However, since 
actual engagement of hardware items is associated with 
each load step, changes to load step definitions typically 
involve re-writing of some code, especially if new 
hardware has been added. 

 
• Tuning Model to Measured Loads and Flows: A major 

reason for using the PC to predict the compressor 
performance is that the PC can effortlessly review results 
from portable analyzers, or from real-time load measuring 
devices such as Windrock’s HP-Guard System, to adjust 
theoretical predictions to more closely match measured 
values. This collection and processing of data has no 
impact on the PLC and requires no changes to the PLC’s 
code. Furthermore, for those cases where pulsation effects 
are affected by the number of other compressors currently 
running, a separate tuning model can be developed for 
multiple scenarios and appropriately engaged when 
needed. Again, without any changes to the PLC’s code. 

 
• Benefits of PC/PLC Combined Model: 
o Identical performance prediction code in every PLC 
o Identical load control code in every unit PLC 
o Easy tuning of compressor model without code 

changes to the PLC 
o More efficient use of compressor and driver 
o Maximum utilization of compressor operating map 
o Failsafe, backup conservative PLC load predictions  
o Lets PLC concentrate on compressor safety, 

monitoring, and hardware changes without the 
complexity of sophisticated performance prediction 
algorithms – see Figure 10. 

o Allows for alternate compressor models of same unit 
(IE certain hardware removed for repairs, multi-
compressor pulsations disparities, etc.) 

o Lower operating costs and more production. 
 

 
Figure-10: Generic Two-Stage Model 

OVERVIEW OF PC VERSUS PLC ALGORITHMS 
 
Item 

PC 
Model 

PLC 
Model 

Max Allowed Discharge Pressures   
Max Allowed Discharge Temperatures   
Rod Loads: Gas Pressures at Flanges   
Rod Loads: Net/Inertia Rod Loads   
Low Suction Volumetric Efficiency   
Low Discharge Volumetric Efficiency   
Gas Compressibility Calculations   
Rod Reversal Issues   
Pressure Differential Limits   
Interstage Pressure Balancing   
Tuning towards Measured Values   
Individual Head/Crank Calculations   
Entropy Based Thermodynamics   

 
=Excellent, =Okay, =Weak, =Seldom Calculated 

 
CONCLUSION 

When there are needs to increase flows and/or to reduce 
operating costs, then Station Operations may often look 
towards maximizing the utilization of the compressor-driver. 
This maximization can be obtained by controlling units based 
on rigorous and tunable thermodynamic compressor 
performance models. 

Algorithms for calculating entropy, balancing interstage 
masses/pressures, calculating gas compressibilities, checking 
inertia-based rod loads, and determination of minimal degrees 
of reversal for crosshead pin safety can be complex, iterative, 
and number-crunching intensive procedures. Ignoring these 
checks may lead to safety-related issues. Replacing these 
checks with simplified, alternate methods will tend to reduce 
the available operating map, reduce compressor-driver 
utilization, or both. 

Complex modeling of compressor performance is not 
ideally handled by most PLCs. However, complex modeling is 
easily handled by PCs, while safety and reliability are ideally 
handled by PLCs. Integrating the power of both systems into a 
single, yet accommodating solution can often provide the 
desired increases in flows and/or reduction in operating costs. 
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FREQUENTLY ASKED QUESTIONS 

Q: Why not just code the more accurate and thorough 
performance predictions into the PLC? 

A: This in fact could be done, but it would involve a lot of 
PLC programming. On a 6-throw, 2-stage, 20-load step 
compressor, you would have to independently model 12 ends 
(load and flow), 6 throws for net rod loads, 6 throws for rod 
reversals (with at least 36 crank angle positions for each throw), 
flow balancing for interstage pressure predictions, etc. for each 
of the 20 load steps. For PLCs that are not ideal for these 
intensive and often iterative calculations, the PC is favored. 
 

Q: Does the PC-based software have to run on the station’s 
HMI/SCADA PC? 

A: No. The software can run on any local PC that can 
communicate to the HMI/SCADA PC via a network 
connection. 

 
Q: Is using the active status of the PLC-to-HMI 

communications okay to validate the status of the PC-to-PLC 
communications? 

A: No. The PLC and HMI/SCADA software may be 
communicating properly even if the PC running the PC-based 
software is down (power loss, operating system crash, software 
crash, network error, etc.). 

 
Q: During test interruptions of the PC-to-PLC 

communications, the compressor sometimes changes load step. 
Why? 

A: The PLC’s load predictions and safety cutoffs are on the 
conservative side to keep its software coding minimal. This 
difference in load/cutoffs predicted for the active load step may 
tend to result in a load step (or more) change. This change is 
also an indication of how having the PC-based software handle 
the performance predictions is keeping your unit running at its 
ideal operation. 

 
Q: Where can a person get a copy of the sample PLC 

control algorithms? 
A: Sample pseudo code for single stage control is included 

in this paper (Appendix-A). Contact your vendor for your PC-
based control software for 2-stage (and higher) code. 
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Appendix A 
 
Single Stage PLC Control Logic (Pseudo Code): 
======================================================== 
Sub CalculatePerformance() 
' Determines BHPs and Flows for all load steps. Stores data in lookup table. 
' If load step invalid (except for overload), then BHP and Flow = -1. 
  IF IsPCConnectionAlive THEN 
    ' PC Software has uploaded latest BHPs and Flows to PLC tables BHP_For_LS() and Flow_For_LS() 
    ' PLC does not have to do any performance calculations. 
  ELSE 
    ' PLC does have to do simplified performance calculations that will likely over-predict consumed BHP. 
    ' Convert to absolute pressures. 
    PsABS = Psf1 + AtmPress 
    PdABS = Pdf1 + AtmPress 
    ' Convert to degrees Rankin. 
    TsR = CurrTs + 459.67 
    ' Get ratio of compression. 
    Ratio = PdABS / PsABS  
    ' Find compressibility of suction gas. 
    Zs = RedlichKwongZ(PsABS, TsR) 
    Tmp1 = Ratio^(1/GasK1) 
    ' Determine adiabatic discharge temperature. 
    TdR = TsR * Ratio/Tmp1 
    IF TdR > MaxTdR1 THEN 
      ALARM: Cylinder Temperatures Exceeding Allows Temperature Limits! 
      ShutDownUnit 
    END IF 
    ' Find compressibility of discharge gas. 
    Zd = RedlichKwongZ(PdABS, TdR) 
    Tmp2 = CurrRPM * PsABS * (Ratio/Tmp1 - 1) * (1 + Zd/Zs) 
    Tmp3 = CurrRPM^3 * PsABS / (TsR * Zs) 
    ' Correct Pressure Ratio for Effects of Gas Compressibility for VE Calculations. 
    Tmp1 = Tmp1 * Zs/Zd 
    ' Cycle through all defined load steps and determine each step’s load. 
    FOR LS = 1 TO NumberOfLoadSteps 
      ' Calculate Volumetric Efficiency (no slippage in load VE’s) 
      VE = 1 - EffClr1(LS) * (Tmp1 - 1) 
      ' BHP = Adiabatic + ValveLoss + ParasiticLoss + AuxHP 
      Tmp4 = Tmp2 * VE * A1Mod1(LS) + Tmp3 * (VE * A3Mod1(LS) + D3Mod1(LS)) + MaxAuxHP 
      ' Check if this load step is safe at these conditions, based on low volumetric efficiencies. 
      VE = 1 - ACIe1(LS) * (Tmp1 - 1) 
      IF VE < MinVEe1 THEN Tmp4 = -1 
      ' Check if this load step is safe at these conditions, based on crosshead pin failing to reverse. 
      VE = 1 - ACIx1(LS) * (Tmp - 1) 
      IF VE < MinVEx1 THEN Tmp4 = -1 
      ' Check if Gas Flange Rod Loads are safe. This code only handles deactivation at Suction Pressure. 
      IF RL13(LS) < 2 THEN   
        TmpRLC = RL11*Pdf1 ' Cases 0 and 1 
      ELSE 
        TmpRLC = RL11*Psf1 ' Case 2 
      END IF 
      TmpRLC = TmpRLC - RL12*Psf1 
      IF RL13(LS) = 1 THEN 
        TmpRLT = RL12*Psf1 ' Case 1 
      ELSE 
        TmpRLT = RL12*Pdf1 ' Cases 0 and 2 
      END IF 
      TmpRLT = TmpRLT - RL11*Psf1 
      IF TmpRLC > RLC1 THEN Tmp4 = -1 
      IF TmpRLT > RLT1 THEN Tmp4 = -1 
      BHP_For_LS(LS) = Tmp4 
    NEXT LS 
  END IF 
End Sub 
======================================================== 
 
======================================================== 
Function RedlichKwongZ(GasPressureAbs, GasTempR) 
' This method is reasonable for most natural gases -- some restrictions exist. 
' Use AGA-8 for process gases. 
  ab = Ax * Ax / Bx 
  b1 = Bx * GasPressureAbs / GasTempR 
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  a1 = b1 * ab / (GasTempR * SQRT(GasTempR)) 
  Q = (a1 - b1 - b1 * b1) * OneThird 
  R = One27th + (a1 * b1 - Q) * 0.5 
  a = Q - OneNinth 
  d = a * a * a + R * R 
  IF d > 0 THEN 
      d1 = SQRT(d) 
      a1 = ABS(R - d1) ^ OneThird 
      b1 = ABS(R + d1) ^ OneThird 
      IF R - d1 >= 0 THEN Zfact = a1 ELSE Zfact = -a1 
      IF R + d1 >= 0 THEN Zfact = Zfact + b1 ELSE Zfact = Zfact - b1 
      IF Zfact < 0  AND  a < 0 THEN Zfact = Zfact + SQRT(ABS(1 - 9 * Q)) 
      Zfact = Zfact + OneThird 
      IF Zfact > 0.254 THEN RedlichKwongZ = Zfact ELSE RedlichKwongZ = 0.254 
  ELSEIF d < 0 THEN 
      IF r - d1 = 0 THEN 
        a1 = Pi / 2 
      ELSE 
        IF D < 0 THEN 
          a1 = ABS(ATN(SQRT(-D) / (r - d1))) 
        ELSE 
          IF r - d1 > 0 THEN a1 = 0 Else a1 = Pi 
        END IF 
      END IF 
      RedlichKwongZ = 2 * SQRT(-a) * COS(a1 * OneThird) + OneThird 
  ELSE ' d=0 
      IF a >= 0 THEN 
        RedlichKwongZ = 2 * ABS(R) ^ OneThird + OneThird 
      ELSE 
        RedlichKwongZ = 2 * SQRT(-R) + OneThird 
      END IF 
  END IF 
End Function 
======================================================== 
 
 
======================================================== 
' Main Code: 
' This is the main control section. It decides when/if a load step change is required. 
 
IF In_ESD_Mode THEN ShutdownUnit   ' May be triggered by code or by user. 
 
' Initialize actions to NOT call for changes to load step. 
Load = FALSE 
Unload = FALSE 
 
' Set items required if Stop Button pressed. This will lead to quickly unloading the unit. 
' Only set timer if not already set, or if time before next load step check is too long. 
IF InStopMode AND ( LS_Time <> FastUnloadTime OR NextLSCheckTimer > FastUnloadTime ) THEN 
  LS_Time = 0 
  SET NextLSCheckTimer TO LS_Time 
  Unload = TRUE 
END IF 
 
' Get sensor data. 
' If no real-time BHP or Flow available then CurrBHP = 0 and/or CurrFlow = 0. 
READ CurrTs, CurrPs, CurrPd, CurrRPM, CurrBHP, CurrFlow, IsPCConnectionAlive 
 
IF CurrTs < 40  OR  CurrTs > 120 THEN 
  WARNING: Suction Temperature Sensor not working. Assuming 60 Deg F. 
  CurrTs = 60 
END IF 
IF CurrPs < -15 OR  CurrPd < 0  OR  (CurrRPM < 0 OR  CurrRPM > 1800) THEN 
  ALARM: Critical Sensor not working. Shutting Down. 
  In_ESD_Mode = TRUE 
END IF 
 
' Take into account pressure drops to arrive at expected pressures at cylinder flanges. 
Psf1 = CurrPs * (1 - PsDropPer1) - PsDrop1 
Pdf1 = CurrPd * (1 + PdDropPer1) + PdDrop1 
 
' We do not handle throttling here. 
IF Psf1 > Pdf1 THEN 
  ALARM: Throttling conditions! 
  CurrPs = CurrPd 
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  ' Psf1 is not changed so rod loads will be correct. 
END IF 
 
' Derate driver power available if RPM changes. Also apply engine limits, if any, here. 
MaxAllowedBHP = RatedBHP / RatedRPM * CurrRPM * TorqueAdj 
 
' Calculate BHP/Flow for all load steps. 
CalculatePerformance() 
 
' If real-time horsepower is available, use it to fine tune predictions. 
IF CurrBHP <= 0  OR  BHP_For_LS(CurrLS) = -1 THEN 
  BHPRealTimeAdj = 1 
ELSE 
  BHPRealTimeAdj = BHP_For_LS(CurrLS) / CurrBHP 
END IF 
 
' Try to prevent cycling of hardware when the current unloading step is lost. 
IF BHP_For_LS(CurrLS) = -1 THEN 
  ' Let us unload for now and set PLC to immediately pick the next safe load step. 
  LS_Time = 0 
  SET NextLSCheckTimer TO LS_Time 
  Unload = TRUE 
  ' Return to most conservative setting. 
  BHPRealTimeAdj = 1 
  ' Set to slow mode to prevent hardware cycling around these current conditions. 
  InPreventCyclingMode = TRUE 
ELSE 
  InPreventCyclingMode = FALSE 
END IF 
 
' Limit correction amounts. If adjustments are too large, then a warning/alarm may be desirable. 
IF BHPRealTimeAdj < 0.92 THEN BHPRealTimeAdj = 0.92 
IF BHPRealTimeAdj > 1.08 THEN BHPRealTimeAdj = 1.08 
IF TorqueAdj < TorqueMinAdj THEN BHPRealTimeAdj = TorqueMinAdj  
IF TorqueAdj > TorqueMaxAdj THEN BHPRealTimeAdj = TorqueMaxAdj  
 
' TRUE if permissive is not an active permissive, or if it is active and it is calling for load. 
LoadPs   = NOT IsActivePsPermissive   OR [ CurrPs   >= MaxPs   ]  
LoadPd   = NOT IsActivePdPermissive   OR [ CurrPd   <= MinPd   ] 
LoadBHP  = NOT IsActiveBHPPermissive  OR [ CurrBHP  <= MinBHP  ] 
LoadFlow = NOT IsActiveFlowPermissive OR [ CurrFlow <= MinFlow ] 
 
' TRUE only if permissive is active permissive and it is calling for less load. 
UnloadPs   = IsActivePsPermissive   AND [ CurrPs   <= MinPs   ] 
UnloadPd   = IsActivePdPermissive   AND [ CurrPd   >= MaxPd   ] 
UnloadBHP  = IsActiveBHPPermissive  AND [ CurrBHP  >= MaxBHP OR CurrBHP > MaxAllowedBHP ] 
UnloadFlow = IsActiveFlowPermissive AND [ CurrFlow >= MaxFlow ] 
 
' Set load and unload statuses 
Unload = [ UnloadPs OR  UnloadPd OR  UnloadBHP OR  UnloadFlow OR InStopMode ] OR      Unload 
Load   = [ LoadPs   AND LoadPd   AND LoadBHP   AND LoadFlow   OR Load ]       AND NOT Unload 
 
' The main decision block 
IF (NOT In_ESD_Mode AND NOT Maintenance_Mode) AND NextLSCheckTimer <= 0 AND (Load OR Unload) THEN 
  ' Determine where we are relative to unit’s current maximum allowed horsepower. 
  Adj = BHP_For_LS(CurrLS) / MaxAllowedBHP 
  IF Adj > 1 THEN Adj = 1 
  AdjLast = Adj   ' Remember last adjustment factor. 
  Cnt = 0 
  DO 
    ' To prevent possibility of an infinite loop, we will limit our time in this loop to 16 passes. 
    Cnt = Cnt + 1 
    IF Cnt > 16 THEN EXIT LOOP 
    ' If we need to jump real far, then let's start to normalize our correction factor for safety. 
    IF Cnt =  6  OR  Cnt = 10 THEN BHPRealTimeAdj = (1 + BHPRealTimeAdj) / 2 
    ' Adjust load goal up/down by 2% of allowed load (or of rated for some applications). 
    IF Load   AND Adj < 0.985 THEN Adj = Adj + 0.02 
    IF Unload AND Adj > 0.025 THEN Adj = Adj - 0.02 
    IF Adj > 1.00 THEN Adj = 0.99 
    IF Adj < 0.00 THEN Adj = 0.02 
 
    ' Set DesiredBHP based on loading/unloading needs. 
    DesiredBHP = Adj * MaxAllowedBHP * BHPRealTimeAdj 
    ' Next loop finds the best load step, based on allowed load, to engage for the current operating point. 
    ' Could be altered to consider Flow or BHP/MM instead of just plain load. 
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    LS_Found = -1 
    BestLoad = -1 
    FOR LS = 1 TO NumberOfLoadSteps 
      IF BHP_For_LS(LS) <= DesiredBHP  AND  BHP_For_LS(LS) > BestLoad THEN 
        BestLoad = BHP_For_LS(LS) 
        LS_Found = LS 
      END IF 
    NEXT LS 
    IF ABS(AdjLast - Adj) > 16 AND NOT (StartUp OR InStopMode) THEN 
      WARNING! Excessively large change in load step required. 
    END IF 
    ' Exit main loop if we in fact found a new and valid load step. 
  LOOP UNTIL (LS_Found <> CurrLS  AND LS_Found <> -1) 
 
  ' If valid load step found, engage it. 
  IF LS_Found <> CurrLS  AND LS_Found <> -1  AND  Cnt <= 16 THEN 
    ' Force a hardware change. 
    EngageHardwareFor LS_Found 
    CurrLS = LS_Found 
  ELSEIF (LS_Found<>-1 AND Cnt<=16)  OR  (Unload AND LS_Found = -1  AND _ 
          BHP_For_LS(CurrLS) <= MaxAllowedBHP * BHPRealTimeAdj) THEN 
    ' Do nothing. Not meeting permissives, but then we can't satisfy them right now so stay where we are. 
  ELSE 
    ' Unit is in trouble. Set alarm and shut down then unit. 
    ALARM: No valid load step found! 
    In_ESD_Mode = TRUE 
  END IF 
 
  ' Determine amount of time to at least stay in the current load step. 
  IF IsPCConnectionAlive THEN 
    IF Load   AND NOT StartUp THEN 
      IF InPreventCyclingMode THEN LS_Time = SlowLoadTime  ELSE  LS_Time = NormalLoadTime 
    END IF 
    IF Load   AND     StartUp    THEN LS_Time = FastLoadTime 
    IF Unload AND NOT InStopMode THEN LS_Time = NormalUnloadTime 
    IF Unload AND     InStopMode THEN LS_Time = FastUnloadTime 
  ELSE 
    ' React quicker if in blind mode. 
    IF Load   THEN LS_Time = FastLoadTime 
    IF Unload THEN LS_Time = FastUnloadTime 
  END IF 
 
  ' Set timer so that we do not change hardware again for a certain amount of time. 
  SET NextLSCheckTimer TO LS_Time 
END IF 
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Appendix B 
 
Example of SCL (Structured Control Language) Code for Two-Stage Model 
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Appendix C 
 
Station Flow Control Pseudo Code 
================================ 

 Input Current_Station_Flow from Flow Meter 
 
 IF Within Flow_Setpoint Deadband THEN 
 
   ConsideringAddingUnit   = FALSE 
   ConsideringRemovingUnit = FALSE 
 
 ELSEIF Wait_Timer = 0  AND  NOT CurrentlyChangingNumberOfUnits  THEN  ‘ Our waiting period is over! 

 
  IF Current_Station_Flow < Flow_Setpoint THEN 

 
     ConsideringRemovingUnit = FALSE 
     FlowFlag = FlowFlag + 0.01 
     IF FlowFlag > 1 THEN 

      FlowFlag =1 
      IF NOT ConsideringAddingUnit THEN 

         ConsideringAddingUnit = TRUE 
         Start ConsideringAddingUnitTimer        ‘ Typically 5 to 30 minutes. 

      ENDIF 
     ENDIF 
 
   ELSE 
 
     ConsideringAddingUnit = FALSE 
     FlowFlag = FlowFlag - 0.01 

    IF FlowFlag < 0 THEN 
      FlowFlag = 0 
        IF NOT ConsideringRemovingUnit THEN 

           ConsideringRemovingUnit = TRUE 
           Start ConsideringRemovingUnitTimer    ‘ Typically 5 to 30 minutes. 

        ENDIF 
     ENDIF 
 
   ENDIF 
 
   Send FlowFlag to all online Unit PLCs  ‘ Typically rescale to 70%..100% to become Unit_Desired_BHP% 
   Start Wait_Timer to X seconds.   ‘ Typically 15 – 60 seconds based on user-desired reaction time. 

ENDIF 
 
 

IF ConsideringAddingUnit  AND  ConsideringAddingUnitTimer = 0  THEN    ‘ Need to add a unit persists! 
  Bring next unit online, if one available (AND it does not add TOO much flow if used as a Swing Unit) 
  CurrentlyChangingNumberOfUnits = TRUE 
ENDIF 
 
 
IF ConsideringRemovingUnit  AND  ConsideringRemovingUnitTimer = 0  THEN ‘ Need to stop a unit persists! 
  Stop one of the units, except if only one left, then leave it on or stop it -- your call! 
  CurrentlyChangingNumberOfUnits = TRUE 
  If using Swing Unit philosophy, select which of the remaining units to become the new Swing Unit. 
ENDIF 

 
 
 IF CurrentlyChangingNumberOfUnits THEN 

  IF (Current unit is ready to be brought online (IE Oil Temp. Okay) )   OR   (it has stopped)  THEN 
    CurrentlyChangingNumberOfUnits = FALSE 
  ENDIF 

 ENDIF 
 


